metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Acetatotris(triphenylarsine)silver(I) acetonitrile solvate monohydrate

Reinout Meijboom* and Alfred Muller

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300. South Africa

Correspondence e-mail: meijboomr.sci@ufs.ac.za

Received 6 September 2007; accepted 12 September 2007

Key indicators: single-crystal X-ray study; T = 101 K; mean σ (C–C) = 0.003 Å; R factor = 0.022; wR factor = 0.075; data-to-parameter ratio = 20.4.

In the title compound, $[Ag(C_2H_3O_2)(C_{18}H_{15}As)_3] \cdot C_2H_3N$. H₂O, the Ag atom is coordinated by three arsine ligands and one O atom, forming a distorted tetrahedral configuration. The Ag-As bond distances are 2.5921 (6), 2.6190 (8) and 2.6373 (9) Å, and the Ag–O bond distance is 2.3269 (18) Å. The Ag atom is displaced 0.7781 (3) Å out of the plane defined by the three As atoms.

Related literature

The crystal structure of the highly related complex [Ag(4-MeC₆H₄SO₃)(AsPh₃)₃] has already been published (Meijboom, Janse van Rensburg, Senekal & Venter, 2006).

For related literature, see: Allen (2002); Mann et al. (1937); Meijboom, Janse van Rensburg, Kirsten & Viljoen (2006); Nardelli et al. (1985).

Experimental

Crystal data

$\beta = 86.621 \ (5)^{\circ}$
$\gamma = 79.662 \ (5)^{\circ}$
$V = 2475 (2) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 2.44 \text{ mm}^{-1}$
T = 101 (2) K
$0.39 \times 0.32 \times 0.29 \text{ mm}$

Data collection

Bruker X8 APEXII diffractometer 66588 measured reflections Absorption correction: multi-scan 12287 independent reflections (SADABS; Bruker, 2004) 11117 reflections with $I > 2\sigma(I)$ $T_{\min} = 0.432, \ T_{\max} = 0.495$ $R_{\rm int} = 0.036$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	H atoms treated by a mixture of
$wR(F^2) = 0.075$	independent and constrained
S = 1.20	refinement
12287 reflections	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
603 parameters	$\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$
3 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$03-H3A\cdots O2$ $C54-H54\cdots N$ $O3-H3B\cdots O3^{i}$	0.887 (17) 0.95 0.865 (17)	1.879 (18) 2.56 2.17 (2)	2.765 (3) 3.307 (3) 2.973 (4)	177 (3) 135 154 (3)

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the South African National Research Foundation, the Research Fund of the University of the Free State and SASOL is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (SA NRF, GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2035).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SADABS (Version 2004/1) and SAINT-Plus (Version 7.12, including XPREP), Bruker AXS Inc. Madison Wisconsin USA
- Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Mann, F. G., Wells, A. F. & Purdue, D. (1937). J. Chem. Soc. pp. 1828-1836.
- Meijboom, R., Janse van Rensburg, J. M., Kirsten, L. & Viljoen, J. A. (2006). Acta Cryst. E62, m2567-m2569.
- Meijboom, R., Janse van Rensburg, J. M., Senekal, N. D. & Venter, J. S. (2006). Acta Cryst. E62, m3056-m3058.
- Nardelli, M., Pellizzi, C., Pellizzi, G. & Tarasconi, P. (1985). J. Chem. Soc. Dalton Trans. pp. 321-331.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2572 [doi:10.1107/S1600536807044595]

Acetatotris(triphenylarsine)silver(I) acetonitrile solvate monohydrate

R. Meijboom and A. Muller

Comment

Silver(I) complexes of the type $[AgL_nX]$ (*L* is a tertiary phosphine or arsine, n = 1–4 and *X* is a coordinating or noncoordinating anion) were first prepared by Mann *et al.* (1937) and are the first crystallographically investigated examples of metal phosphine complexes. These compounds display a rich diversity of structural types due to the interplay of parameters such as the geometric flexibility of Ag(I), the bite angle, the electronic properties of the group 15 donor ligand, the coordination of the supporting ligand, *etc.* We present here the title compound, (I), a silver(I) tris(triphenylarsine) complex, of which only relatively few (11) examples can be found in the literature [Cambridge Structural Database (CSD), Version 5.28, November 2006 update; Allen, 2002].

Comparison of the title compound, (I), to the analogous $[Ag(4-MeC_6H_4SO_3)(AsPh_3)_3]$ complex (Meijboom, Janse van Rensburg, Senekal & Venter, 2006) indicate the expected tetrahedral environment around Ag. Coordination bond angles show a good correlation and all other bond distances and angles are unremarkable. The Ag atom in compound (I) is surrounded by three arsine ligands and an O atom of the acetate, forming a distorted tetrahedral configuration. The Ag—As bond distances are within the expected range (2.5921 (6), 2.6190 (8) and 2.6373 (9) Å). Also noted is the displacement of the Ag atom out of the plane defined by the three As atoms. In the title compound, (I) the Ag is displaced 0.7781 (3) Å, In addition, some weak inter- and intramolecular interactions are observed (Table 1).

An interesting factor to note is the displacement of the Ag atom out of the plane defined by the three As atoms. This displacement seems to be related to the coordinating ability of the fourth/supporting (anionic) group. When describing a completely tetrhedral environment, as in [Ag(AsPh₃)₄][PF₆] (Meijboom, Janse van Rensburg, Kirsten & Viljoen, 2006), this displacement is 0.8903 (3) Å. With different coordinating ligands, the distortion from tetrahedral gets larger, as expressed by this displacement. The displacement decreases from 0.7781 (3) Å for (I), 0.6438 (2) Å for [Ag(4-MeC₆H₄SO₃)(AsPh₃)₃] (Meijboom, Janse van Rensburg, Senekal & Venter, 2006) unto 0.6359 (2) Å for [Ag(NO₃)(AsPh₃)₃] (Nardelli *et al.*, 1985). Up to now, no trigonal planar complexes have been reported for AsPh₃ yet, however these are not unknown for other ligands, such as phosphines.

Experimental

A solution of triphenylarsine (57.4 mg, 0.187 mmol) in warm ethanol (3.0 ml) was added to a solution of $[Ag(CH_3CO_2)]$ (31.0 mg, 0.186 mmol) in warm ethanol (2.0 ml). Colourless crystals of the title compound were obtained in quantitative yield (based on As) on allowing the solution to cool and stand.

Refinement

H atoms were positioned geometrically and refined using a riding model, with fixed C—H distances of 0.93 Å (CH) [$U_{iso}(H) = 1.2U_{eq}$] and 0.96 Å (CH₃) [$U_{iso}(H) = 1.5U_{eq}$]. The highest residual peak is 0.73 e located 1.17 Å from atom C1 and the

deepest hole -0.70 e, 0.64 Å from Ag. A Hirschfield test failure appeared in the structure validation. Using a disordered model the U values of the As atoms were refined to an 99.2% occupancy, allowing the structure to pass the Hirschfield test. The aqua molecule was restrained to keep the refinement stable.

Figures

Fig. 1. The structure (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring.

Acetatotris(triphenylarsine)silver(I) acetonitrile solvate monohydrate

Crystal data	
$[Ag(C_2H_3O_2)(C_{18}H_{15}As)_3] \cdot C_2H_3N \cdot H_2O$	Z = 2
$M_r = 1144.64$	$F_{000} = 1156$
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.536 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
a = 13.121 (5) Å	Cell parameters from 7711 reflections
b = 13.739 (5) Å	$\theta = 2.2 - 28.3^{\circ}$
c = 14.051 (5) Å	$\mu = 2.44 \text{ mm}^{-1}$
$\alpha = 83.625 (5)^{\circ}$	T = 101 (2) K
$\beta = 86.621 \ (5)^{\circ}$	Prism, colourless
$\gamma = 79.662 \ (5)^{\circ}$	$0.39 \times 0.32 \times 0.29 \text{ mm}$
$V = 2475 (2) \text{ Å}^3$	
Data collection	
Bruker X8 APEXII diffractometer	11117 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 101(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -17 \rightarrow 17$
$T_{\min} = 0.432, \ T_{\max} = 0.495$	$k = -18 \rightarrow 18$

Refinement

Refinement on F^2

66588 measured reflections

12287 independent reflections

3 restraints

 $l = -18 \rightarrow 18$

Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.022$	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.6766P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.075$	$(\Delta/\sigma)_{\rm max} = 0.003$
<i>S</i> = 1.20	$\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$
12287 reflections	$\Delta \rho_{min} = -0.70 \text{ e } \text{\AA}^{-3}$
603 parameters	Extinction correction: none

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 5 s/frame. A total of 2771 frames were collected with a frame width of 0.5° covering up to $\theta = 28.33^{\circ}$ with 99.9% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag	0.758824 (11)	0.195208 (10)	0.728465 (10)	0.01267 (4)
As1	0.765587 (15)	0.010529 (14)	0.806250 (14)	0.01240 (5)
As2	0.657612 (15)	0.325411 (14)	0.835151 (13)	0.01243 (5)
As3	0.684178 (15)	0.216483 (14)	0.557129 (13)	0.01226 (5)
01	0.93657 (12)	0.19440 (12)	0.71474 (13)	0.0274 (4)
02	0.88524 (13)	0.35687 (13)	0.69568 (16)	0.0413 (5)
C1	0.95360 (15)	0.28120 (16)	0.70034 (15)	0.0185 (4)
C2	1.06546 (18)	0.29657 (18)	0.6830 (2)	0.0306 (5)
H2A	1.0837	0.2983	0.6143	0.046*
H2B	1.1114	0.2417	0.7178	0.046*
H2C	1.0732	0.3596	0.7058	0.046*
Ν	0.0604 (2)	0.4127 (2)	0.9169 (2)	0.0553 (7)
C3	-0.0024 (2)	0.4715 (2)	0.8821 (2)	0.0388 (6)
C4	-0.0845 (3)	0.5446 (2)	0.8408 (3)	0.0525 (8)
H4A	-0.1235	0.5134	0.799	0.079*
H4B	-0.0549	0.598	0.8032	0.079*
H4C	-0.131	0.5722	0.892	0.079*
C11	0.84120 (15)	-0.10028 (14)	0.74123 (14)	0.0140 (4)
C12	0.94758 (15)	-0.10439 (15)	0.72360 (14)	0.0173 (4)
H12	0.9808	-0.0549	0.7442	0.021*
C13	1.00489 (16)	-0.18071 (16)	0.67599 (15)	0.0202 (4)
H13	1.0774	-0.1837	0.6646	0.024*
C14	0.95619 (17)	-0.25292 (16)	0.64493 (16)	0.0217 (4)
H14	0.9954	-0.3051	0.6123	0.026*
C15	0.85059 (17)	-0.24847 (16)	0.66174 (17)	0.0243 (5)

H15	0.8173	-0.2976	0.6404	0.029*
C16	0.79312 (16)	-0.17225 (15)	0.70979 (16)	0.0209 (4)
H16	0.7206	-0.1695	0.7211	0.025*
C21	0.82362 (15)	-0.02343 (14)	0.93176 (14)	0.0140 (4)
C22	0.85978 (16)	-0.12179 (15)	0.96811 (15)	0.0174 (4)
H22	0.8522	-0.175	0.9329	0.021*
C23	0.90675 (16)	-0.14144 (16)	1.05562 (15)	0.0192 (4)
H23	0.9313	-0.2083	1.0802	0.023*
C24	0.91812 (16)	-0.06414 (16)	1.10748 (15)	0.0199 (4)
H24	0.9512	-0.078	1.167	0.024*
C25	0.88111 (17)	0.03360 (16)	1.07243 (15)	0.0209 (4)
H25	0.888	0.0865	1.1084	0.025*
C26	0.83390 (15)	0.05398 (15)	0.98461 (15)	0.0173 (4)
H26	0.8086	0.1208	0.9607	0.021*
C31	0.62951 (15)	-0.02768 (14)	0.82364 (14)	0.0138 (4)
C32	0.59538 (16)	-0.07678 (16)	0.90805 (15)	0.0194 (4)
H32	0.6396	-0.0941	0.9607	0.023*
C33	0.49643 (17)	-0.10040 (17)	0.91527 (16)	0.0242 (5)
H33	0.4732	-0.1341	0.973	0.029*
C34	0.43107 (17)	-0.07515 (17)	0.83861 (16)	0.0233 (4)
H34	0.3636	-0.0918	0.8439	0.028*
C35	0.46450 (17)	-0.02577 (16)	0.75457 (16)	0.0207 (4)
H35	0.4201	-0.0082	0.7021	0.025*
C36	0.56342 (16)	-0.00195 (15)	0.74742 (14)	0.0170 (4)
H36	0.5862	0.0323	0.6899	0.02*
C41	0.70622 (16)	0.32578 (14)	0.96343 (14)	0.0156 (4)
C42	0.81163 (17)	0.32505 (16)	0.97131 (16)	0.0222 (4)
H42	0.8559	0.3266	0.9154	0.027*
C43	0.85215 (18)	0.32210 (18)	1.06091 (18)	0.0280 (5)
H43	0.9239	0.3224	1.0661	0.034*
C44	0.78762 (19)	0.31865 (17)	1.14311 (17)	0.0278 (5)
H44	0.8154	0.3162	1.2044	0.033*
C45	0.68339 (19)	0.31888 (17)	1.13530 (16)	0.0257 (5)
H45	0.6394	0.3167	1.1914	0.031*
C46	0.64217 (17)	0.32224 (16)	1.04540 (15)	0.0195 (4)
H46	0.5703	0.3221	1.0404	0.023*
C51	0.51136 (15)	0.31861 (14)	0.86055 (13)	0.0136 (4)
C52	0.47895 (16)	0.23102 (15)	0.84491 (15)	0.0182 (4)
H52	0.528	0.1773	0.8237	0.022*
C53	0.37538 (17)	0.22124 (17)	0.86003 (16)	0.0230 (4)
Н53	0.354	0.161	0.8493	0.028*
C54	0.30339 (17)	0.29932 (17)	0.89081 (15)	0.0228 (4)
H54	0.2327	0.2926	0.9015	0.027*
C55	0.33488 (16)	0.38747 (16)	0.90598 (15)	0.0209 (4)
Н55	0.2855	0.4411	0.9267	0.025*
C56	0.43817 (16)	0.39748 (15)	0.89097 (15)	0.0179 (4)
H56	0.4592	0.458	0.9013	0.021*
C61	0.64800 (14)	0.46448 (14)	0.78628 (14)	0.0147 (4)
C62	0.62752 (16)	0.54129 (15)	0.84537 (16)	0.0195 (4)
	· /	× /	· · /	· · ·

H62	0.6241	0.5265	0.913	0.023*
C63	0.61217 (17)	0.63949 (16)	0.80505 (18)	0.0251 (5)
H63	0.5973	0.692	0.8452	0.03*
C64	0.61850 (17)	0.66101 (17)	0.70649 (19)	0.0273 (5)
H64	0.606	0.7282	0.679	0.033*
C65	0.64299 (17)	0.58481 (18)	0.64777 (17)	0.0257 (5)
H65	0.6496	0.5999	0.5803	0.031*
C66	0.65778 (16)	0.48681 (16)	0.68732 (15)	0.0200 (4)
H66	0.6746	0.4346	0.647	0.024*
C71	0.53852 (15)	0.20706 (14)	0.54807 (14)	0.0142 (4)
C72	0.46556 (16)	0.27055 (16)	0.59846 (15)	0.0195 (4)
H72	0.4875	0.3185	0.6327	0.023*
C73	0.36101 (16)	0.26442 (17)	0.59916 (16)	0.0230 (4)
H73	0.3118	0.3079	0.634	0.028*
C74	0.32848 (16)	0.19511 (16)	0.54925 (16)	0.0214 (4)
H74	0.2569	0.191	0.5496	0.026*
C75	0.40016 (16)	0.13178 (16)	0.49881 (16)	0.0214 (4)
H75	0.3778	0.0843	0.4643	0.026*
C76	0.50486 (16)	0.13731 (15)	0.49845 (15)	0.0184 (4)
H76	0.5538	0.0932	0.4641	0.022*
C81	0.69607 (15)	0.33401 (14)	0.46904 (14)	0.0146 (4)
C82	0.61863 (17)	0.37928 (16)	0.40779 (15)	0.0212 (4)
H82	0.5538	0.3571	0.4119	0.025*
C83	0.63590 (19)	0.45763 (17)	0.33981 (16)	0.0259 (5)
H83	0.5826	0.489	0.2981	0.031*
C84	0.72991 (19)	0.48946 (16)	0.33319 (16)	0.0245 (5)
H84	0.7421	0.5413	0.2856	0.029*
C85	0.80700 (18)	0.44592 (17)	0.39586 (17)	0.0265 (5)
H85	0.8714	0.4688	0.3919	0.032*
C86	0.78998 (17)	0.36875 (16)	0.46441 (16)	0.0217 (4)
H86	0.8423	0.3397	0.508	0.026*
C91	0.75413 (15)	0.11608 (14)	0.47754 (14)	0.0141 (4)
C92	0.73331 (15)	0.11703 (16)	0.38087 (14)	0.0166 (4)
H92	0.6821	0.1676	0.3518	0.02*
C93	0.78775 (16)	0.04381 (16)	0.32758 (15)	0.0196 (4)
H93	0.7735	0.0443	0.262	0.024*
C94	0.86278 (16)	-0.02995 (15)	0.36955 (15)	0.0191 (4)
H94	0.8993	-0.0802	0.3329	0.023*
C95	0.88455 (16)	-0.03056 (15)	0.46499 (15)	0.0200 (4)
H95	0.9364	-0.0807	0.4937	0.024*
C96	0.83026 (16)	0.04241 (15)	0.51848 (14)	0.0176 (4)
H96	0.8453	0.042	0.5838	0.021*
O3	0.92952 (18)	0.52412 (16)	0.58411 (17)	0.0479 (5)
H3A	0.917 (3)	0.4700 (19)	0.620 (2)	0.058*
H3B	0.962 (3)	0.529 (2)	0.5288 (16)	0.058*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag	0.01282 (7)	0.01352 (7)	0.01234 (7)	-0.00327 (5)	-0.00042 (5)	-0.00269 (5)
As1	0.01405 (10)	0.01127 (9)	0.01265 (10)	-0.00450 (7)	-0.00185 (7)	-0.00013 (7)
As2	0.01327 (9)	0.01217 (9)	0.01205 (9)	-0.00211 (7)	0.00058 (7)	-0.00291 (7)
As3	0.01330 (9)	0.01365 (10)	0.01007 (9)	-0.00233 (7)	-0.00157 (7)	-0.00174 (7)
01	0.0186 (8)	0.0202 (8)	0.0437 (10)	-0.0049 (6)	0.0023 (7)	-0.0034 (7)
O2	0.0226 (9)	0.0241 (9)	0.0746 (15)	-0.0015 (7)	0.0040 (9)	-0.0007 (9)
C1	0.0140 (9)	0.0211 (10)	0.0206 (10)	-0.0044 (8)	-0.0004 (8)	-0.0009 (8)
C2	0.0204 (11)	0.0241 (12)	0.0484 (15)	-0.0080 (9)	0.0060 (10)	-0.0056 (11)
Ν	0.0344 (13)	0.0447 (15)	0.086 (2)	0.0027 (12)	0.0064 (14)	-0.0222 (15)
C3	0.0342 (14)	0.0379 (15)	0.0472 (16)	-0.0100 (12)	0.0067 (12)	-0.0157 (13)
C4	0.056 (2)	0.0433 (17)	0.058 (2)	-0.0087 (15)	-0.0157 (16)	0.0038 (15)
C11	0.0164 (9)	0.0122 (9)	0.0136 (9)	-0.0043 (7)	-0.0017 (7)	0.0014 (7)
C12	0.0163 (9)	0.0205 (10)	0.0170 (9)	-0.0083 (8)	-0.0025 (8)	-0.0010 (8)
C13	0.0146 (9)	0.0237 (11)	0.0219 (10)	-0.0037 (8)	0.0003 (8)	-0.0002 (8)
C14	0.0206 (10)	0.0167 (10)	0.0268 (11)	-0.0010 (8)	0.0018 (9)	-0.0032 (8)
C15	0.0213 (11)	0.0175 (10)	0.0367 (13)	-0.0072 (8)	0.0026 (9)	-0.0097 (9)
C16	0.0155 (9)	0.0179 (10)	0.0307 (12)	-0.0048 (8)	0.0017 (8)	-0.0073 (9)
C21	0.0125 (9)	0.0163 (9)	0.0142 (9)	-0.0056 (7)	-0.0018 (7)	0.0004 (7)
C22	0.0188 (10)	0.0158 (9)	0.0187 (10)	-0.0059 (8)	-0.0023 (8)	-0.0010 (8)
C23	0.0185 (10)	0.0193 (10)	0.0187 (10)	-0.0038 (8)	-0.0014 (8)	0.0032 (8)
C24	0.0186 (10)	0.0281 (11)	0.0135 (9)	-0.0070 (8)	-0.0018 (8)	0.0006 (8)
C25	0.0240 (11)	0.0251 (11)	0.0159 (10)	-0.0079 (9)	-0.0008(8)	-0.0063 (8)
C26	0.0171 (9)	0.0162 (9)	0.0190 (10)	-0.0038 (7)	0.0009 (8)	-0.0022(8)
C31	0.0145 (9)	0.0125 (9)	0.0154 (9)	-0.0039 (7)	-0.0004 (7)	-0.0028 (7)
C32	0.0185 (10)	0.0222 (10)	0.0174 (10)	-0.0045 (8)	-0.0029 (8)	0.0011 (8)
C33	0.0217 (11)	0.0311 (12)	0.0205 (11)	-0.0119 (9)	0.0000 (9)	0.0057 (9)
C34	0.0168 (10)	0.0265 (11)	0.0282 (12)	-0.0092(8)	-0.0010 (9)	-0.0010 (9)
C35	0.0195 (10)	0.0244 (11)	0.0198 (10)	-0.0064 (8)	-0.0059 (8)	-0.0018 (8)
C36	0.0201 (10)	0.0171 (10)	0.0144 (9)	-0.0047 (8)	-0.0020 (8)	-0.0010 (7)
C41	0.0187 (9)	0.0106 (9)	0.0174 (9)	-0.0008 (7)	-0.0043 (8)	-0.0027 (7)
C42	0.0198 (10)	0.0227 (11)	0.0245 (11)	-0.0023 (8)	-0.0019 (8)	-0.0066 (9)
C43	0.0224 (11)	0.0274 (12)	0.0358 (13)	-0.0022 (9)	-0.0137 (10)	-0.0074 (10)
C44	0.0370 (13)	0.0237 (11)	0.0230 (11)	0.0004 (10)	-0.0159 (10)	-0.0053 (9)
C45	0.0347 (13)	0.0263 (11)	0.0149 (10)	-0.0019 (9)	-0.0025 (9)	-0.0019 (8)
C46	0.0211 (10)	0.0206 (10)	0.0164 (10)	-0.0016 (8)	-0.0028 (8)	-0.0027 (8)
C51	0.0149 (9)	0.0159 (9)	0.0098 (8)	-0.0033 (7)	-0.0010 (7)	0.0009 (7)
C52	0.0213 (10)	0.0160 (9)	0.0174 (10)	-0.0043 (8)	-0.0015 (8)	-0.0007 (8)
C53	0.0249 (11)	0.0233 (11)	0.0228 (11)	-0.0105 (9)	-0.0039 (9)	0.0010 (9)
C54	0.0161 (10)	0.0324 (12)	0.0198 (10)	-0.0084 (9)	-0.0016 (8)	0.0042 (9)
C55	0.0157 (10)	0.0253 (11)	0.0199 (10)	-0.0009 (8)	0.0004 (8)	-0.0002(8)
C56	0.0181 (10)	0.0176 (10)	0.0186 (10)	-0.0049 (8)	0.0006 (8)	-0.0024 (8)
C61	0.0108 (8)	0.0149 (9)	0.0183 (9)	-0.0029 (7)	0.0000 (7)	-0.0008 (7)
C62	0.0182 (10)	0.0172 (10)	0.0235 (10)	-0.0047 (8)	0.0011 (8)	-0.0028 (8)
C63	0.0205 (10)	0.0167 (10)	0.0395 (13)	-0.0058 (8)	-0.0007 (10)	-0.0048 (9)
	× /	· · ·	× /	· · ·	· · · /	· · ·

C64	0.0179 (10)	0.0180 (10)	0.0458 (14)	-0.0093 (8)	-0.0086 (10)	0.0114 (10)
C65	0.0228 (11)	0.0304 (12)	0.0238 (11)	-0.0116 (9)	-0.0054 (9)	0.0111 (9)
C66	0.0173 (10)	0.0244 (11)	0.0193 (10)	-0.0073 (8)	-0.0005 (8)	-0.0002 (8)
C71	0.0151 (9)	0.0151 (9)	0.0120 (9)	-0.0032 (7)	-0.0009 (7)	0.0020 (7)
C72	0.0208 (10)	0.0197 (10)	0.0183 (10)	-0.0037 (8)	0.0015 (8)	-0.0042 (8)
C73	0.0174 (10)	0.0247 (11)	0.0253 (11)	-0.0005 (8)	0.0048 (8)	-0.0041 (9)
C74	0.0147 (9)	0.0243 (11)	0.0247 (11)	-0.0057 (8)	0.0012 (8)	0.0028 (9)
C75	0.0198 (10)	0.0219 (10)	0.0250 (11)	-0.0090 (8)	-0.0011 (8)	-0.0037 (9)
C76	0.0178 (10)	0.0185 (10)	0.0193 (10)	-0.0030 (8)	0.0010 (8)	-0.0055 (8)
C81	0.0176 (9)	0.0139 (9)	0.0126 (9)	-0.0029 (7)	0.0000 (7)	-0.0030 (7)
C82	0.0214 (10)	0.0216 (10)	0.0209 (10)	-0.0060 (8)	-0.0032 (8)	0.0013 (8)
C83	0.0330 (12)	0.0212 (11)	0.0212 (11)	-0.0012 (9)	-0.0067 (9)	0.0048 (9)
C84	0.0357 (13)	0.0139 (10)	0.0226 (11)	-0.0039 (9)	0.0030 (9)	0.0009 (8)
C85	0.0252 (11)	0.0223 (11)	0.0330 (13)	-0.0099 (9)	0.0043 (10)	-0.0014 (9)
C86	0.0195 (10)	0.0196 (10)	0.0261 (11)	-0.0050 (8)	-0.0031 (8)	0.0009 (8)
C91	0.0134 (9)	0.0153 (9)	0.0142 (9)	-0.0044 (7)	0.0004 (7)	-0.0015 (7)
C92	0.0134 (9)	0.0224 (10)	0.0143 (9)	-0.0029 (7)	-0.0017 (7)	-0.0031 (8)
C93	0.0175 (10)	0.0286 (11)	0.0157 (9)	-0.0085 (8)	0.0008 (8)	-0.0088 (8)
C94	0.0188 (10)	0.0165 (10)	0.0237 (10)	-0.0066 (8)	0.0059 (8)	-0.0071 (8)
C95	0.0188 (10)	0.0166 (10)	0.0228 (10)	-0.0008 (8)	0.0010 (8)	0.0018 (8)
C96	0.0194 (10)	0.0187 (10)	0.0138 (9)	-0.0036 (8)	-0.0001 (8)	0.0016 (7)
O3	0.0540 (13)	0.0364 (11)	0.0523 (14)	-0.0093 (10)	0.0106 (11)	-0.0045 (10)

Geometric parameters (Å, °)

Ag—O1	2.3269 (18)	C44—C45	1.378 (3)
Ag—As2	2.5921 (6)	C44—H44	0.95
Ag—As3	2.6190 (8)	C45—C46	1.396 (3)
Ag—As1	2.6373 (9)	C45—H45	0.95
As1—C21	1.938 (2)	C46—H46	0.95
As1—C31	1.944 (2)	C51—C52	1.390 (3)
As1—C11	1.949 (2)	C51—C56	1.400 (3)
As2—C61	1.942 (2)	C52—C53	1.391 (3)
As2—C41	1.948 (2)	С52—Н52	0.95
As2—C51	1.948 (2)	C53—C54	1.386 (3)
As3—C91	1.9399 (19)	С53—Н53	0.95
As3—C81	1.946 (2)	C54—C55	1.389 (3)
As3—C71	1.951 (2)	С54—Н54	0.95
O1—C1	1.245 (3)	C55—C56	1.388 (3)
O2—C1	1.244 (3)	С55—Н55	0.95
C1—C2	1.522 (3)	С56—Н56	0.95
C2—H2A	0.98	C61—C62	1.393 (3)
C2—H2B	0.98	C61—C66	1.394 (3)
C2—H2C	0.98	C62—C63	1.388 (3)
N—C3	1.136 (4)	С62—Н62	0.95
C3—C4	1.435 (4)	C63—C64	1.384 (4)
C4—H4A	0.98	С63—Н63	0.95
C4—H4B	0.98	C64—C65	1.386 (4)
C4—H4C	0.98	С64—Н64	0.95

C11—C16	1.387 (3)	C65—C66	1.383 (3)
C11—C12	1.395 (3)	С65—Н65	0.95
C12—C13	1.388 (3)	С66—Н66	0.95
C12—H12	0.95	C71—C76	1.391 (3)
C13—C14	1.393 (3)	C71—C72	1.391 (3)
С13—Н13	0.95	C72—C73	1.389 (3)
C14—C15	1.383 (3)	С72—Н72	0.95
C14—H14	0.95	C73—C74	1.382 (3)
C15—C16	1.391 (3)	С73—Н73	0.95
С15—Н15	0.95	C74—C75	1.382 (3)
С16—Н16	0.95	С74—Н74	0.95
C21—C26	1.393 (3)	C75—C76	1.389 (3)
C21—C22	1.399 (3)	С75—Н75	0.95
C22—C23	1.386 (3)	С76—Н76	0.95
С22—Н22	0.95	C81—C82	1.385 (3)
C23—C24	1.387 (3)	C81—C86	1.395 (3)
С23—Н23	0.95	C82—C83	1.399 (3)
C24—C25	1.389 (3)	С82—Н82	0.95
C24—H24	0.95	C83—C84	1.376 (3)
C25—C26	1.391 (3)	С83—Н83	0.95
С25—Н25	0.95	C84—C85	1.388 (3)
С26—Н26	0.95	C84—H84	0.95
C31—C32	1.389 (3)	C85—C86	1.391 (3)
C31—C36	1.393 (3)	С85—Н85	0.95
C32—C33	1.389 (3)	С86—Н86	0.95
С32—Н32	0.95	C91—C96	1.389 (3)
C33—C34	1.391 (3)	C91—C92	1.399 (3)
С33—Н33	0.95	С92—С93	1.389 (3)
C34—C35	1.384 (3)	С92—Н92	0.95
С34—Н34	0.95	C93—C94	1.386 (3)
C35—C36	1.390 (3)	С93—Н93	0.95
С35—Н35	0.95	C94—C95	1.386 (3)
С36—Н36	0.95	С94—Н94	0.95
C41—C46	1.387 (3)	C95—C96	1.387 (3)
C41—C42	1.392 (3)	С95—Н95	0.95
C42—C43	1.389 (3)	С96—Н96	0.95
C42—H42	0.95	O3—H3A	0.887 (17)
C43—C44	1.393 (4)	O3—H3B	0.865 (17)
C43—H43	0.95		
O1—Ag—As2	114.21 (4)	C42—C43—H43	120
O1—Ag—As3	109.38 (5)	C44—C43—H43	120
As2—Ag—As3	111.58 (2)	C45—C44—C43	119.9 (2)
O1—Ag—As1	97.83 (4)	C45—C44—H44	120.1
As2—Ag—As1	112.97 (2)	C43—C44—H44	120.1
As3—Ag—As1	110.077 (13)	C44—C45—C46	120.3 (2)
C21—As1—C31	103.76 (8)	C44—C45—H45	119.8
C21—As1—C11	99.53 (8)	C46—C45—H45	119.8
C31—As1—C11	100.32 (8)	C41—C46—C45	119.9 (2)
C21—As1—Ag	117.12 (6)	C41—C46—H46	120

C31—As1—Ag	112.95 (6)	C45—C46—H46	120
C11—As1—Ag	120.50 (6)	C52—C51—C56	119.12 (18)
C61—As2—C41	101.39 (8)	C52—C51—As2	117.31 (14)
C61—As2—C51	100.35 (8)	C56—C51—As2	123.55 (15)
C41—As2—C51	102.21 (8)	C51—C52—C53	120.59 (19)
C61—As2—Ag	116.99 (6)	С51—С52—Н52	119.7
C41—As2—Ag	117.63 (6)	С53—С52—Н52	119.7
C51—As2—Ag	115.58 (6)	C54—C53—C52	120.0 (2)
C91—As3—C81	98.54 (8)	С54—С53—Н53	120
C91—As3—C71	102.62 (8)	С52—С53—Н53	120
C81—As3—C71	101.76 (8)	C53—C54—C55	119.8 (2)
C91—As3—Ag	112.54 (6)	С53—С54—Н54	120.1
C81—As3—Ag	120.68 (6)	С55—С54—Н54	120.1
C71—As3—Ag	117.66 (6)	C56—C55—C54	120.3 (2)
C1—O1—Ag	109.98 (13)	С56—С55—Н55	119.8
O2—C1—O1	124.6 (2)	С54—С55—Н55	119.8
O2—C1—C2	117.15 (19)	C55—C56—C51	120.13 (19)
O1—C1—C2	118.16 (19)	С55—С56—Н56	119.9
C1—C2—H2A	109.5	С51—С56—Н56	119.9
C1—C2—H2B	109.5	C62—C61—C66	119.69 (19)
H2A—C2—H2B	109.5	C62—C61—As2	122.77 (15)
C1—C2—H2C	109.5	C66—C61—As2	117.48 (15)
H2A—C2—H2C	109.5	C63—C62—C61	119.8 (2)
H2B—C2—H2C	109.5	С63—С62—Н62	120.1
N—C3—C4	177.9 (3)	С61—С62—Н62	120.1
C3—C4—H4A	109.5	C64—C63—C62	120.1 (2)
C3—C4—H4B	109.5	С64—С63—Н63	120
H4A—C4—H4B	109.5	С62—С63—Н63	120
C3—C4—H4C	109.5	C63—C64—C65	120.2 (2)
H4A—C4—H4C	109.5	С63—С64—Н64	119.9
H4B—C4—H4C	109.5	С65—С64—Н64	119.9
C16—C11—C12	119.53 (18)	C66—C65—C64	120.0 (2)
C16—C11—As1	122.75 (15)	С66—С65—Н65	120
C12—C11—As1	117.69 (14)	С64—С65—Н65	120
C13—C12—C11	120.10 (19)	C65—C66—C61	120.1 (2)
C13—C12—H12	120	С65—С66—Н66	120
C11—C12—H12	120	С61—С66—Н66	120
C12—C13—C14	120.07 (19)	C76—C71—C72	118.81 (19)
С12—С13—Н13	120	C76—C71—As3	123.57 (15)
C14—C13—H13	120	C72—C71—As3	117.53 (15)
C15—C14—C13	119.86 (19)	C73—C72—C71	120.6 (2)
C15—C14—H14	120.1	С73—С72—Н72	119.7
C13—C14—H14	120.1	С71—С72—Н72	119.7
C14—C15—C16	120.1 (2)	C74—C73—C72	120.07 (19)
C14—C15—H15	119.9	С74—С73—Н73	120
C16—C15—H15	119.9	С72—С73—Н73	120
C11—C16—C15	120.3 (2)	C75—C74—C73	119.9 (2)
C11—C16—H16	119.9	С75—С74—Н74	120.1
C15—C16—H16	119.9	C73—C74—H74	120.1

C26—C21—C22	119 60 (18)	C74—C75—C76	120 2 (2)
C_{26} C_{21} A_{s1}	118.00 (15)	C74—C75—H75	119.9
C_{22} — C_{21} —As1	122.32 (15)	C76—C75—H75	119.9
C_{23} C_{22} C_{21}	119.89 (19)	C75—C76—C71	120.47 (19)
C23—C22—H22	120.1	C75—C76—H76	119.8
C21—C22—H22	120.1	C71—C76—H76	119.8
C22—C23—C24	120.38 (19)	C82—C81—C86	119.72 (19)
С22—С23—Н23	119.8	C82—C81—As3	122.82 (15)
C24—C23—H23	119.8	C86—C81—As3	117.33 (15)
C23—C24—C25	120.03 (19)	C81—C82—C83	120.0 (2)
C23—C24—H24	120	C81—C82—H82	120
C25—C24—H24	120	С83—С82—Н82	120
C24—C25—C26	119.95 (19)	C84—C83—C82	120.2 (2)
C24—C25—H25	120	C84—C83—H83	119.9
C26—C25—H25	120	C82—C83—H83	119.9
C25—C26—C21	120.14 (19)	C83—C84—C85	120.1 (2)
C25—C26—H26	119.9	C83—C84—H84	119.9
C21—C26—H26	119.9	C85—C84—H84	119.9
C32—C31—C36	119.39 (18)	C84—C85—C86	120.0 (2)
C32 - C31 - As1	123.30 (15)	C84—C85—H85	120
C36—C31—As1	117.30 (15)	С86—С85—Н85	120
C33—C32—C31	119.83 (19)	C85—C86—C81	119.9 (2)
C33—C32—H32	120.1	C85—C86—H86	120
C31—C32—H32	120.1	C81—C86—H86	120
C32—C33—C34	120.5 (2)	C96—C91—C92	119.31 (18)
С32—С33—Н33	119.8	C96—C91—As3	117.85 (15)
C34—C33—H33	119.8	C92—C91—As3	122.81 (15)
C35—C34—C33	119.9 (2)	C93—C92—C91	119.77 (19)
C35—C34—H34	120.1	С93—С92—Н92	120.1
C33—C34—H34	120.1	С91—С92—Н92	120.1
C34—C35—C36	119.6 (2)	C94—C93—C92	120.37 (19)
C34—C35—H35	120.2	C94—C93—H93	119.8
С36—С35—Н35	120.2	С92—С93—Н93	119.8
C35—C36—C31	120.78 (19)	C93—C94—C95	120.09 (18)
С35—С36—Н36	119.6	С93—С94—Н94	120
С31—С36—Н36	119.6	С95—С94—Н94	120
C46—C41—C42	119.76 (19)	C94—C95—C96	119.7 (2)
C46—C41—As2	123.17 (16)	С94—С95—Н95	120.1
C42—C41—As2	117.00 (15)	С96—С95—Н95	120.1
C43—C42—C41	120.1 (2)	C95—C96—C91	120.75 (19)
C43—C42—H42	120	С95—С96—Н96	119.6
C41—C42—H42	120	С91—С96—Н96	119.6
C42—C43—C44	120.1 (2)	НЗА—ОЗ—НЗВ	130 (3)
Ω_1 —Ag—As1—C21	63 64 (8)	Ag—As2—C41—C42	49 02 (17)
As2-Ag-As1-C21	-56.89 (7)	C46—C41—C42—C43	-0.8 (3)
As3—Ag—As1—C21	177.64 (6)	As2—C41—C42—C43	-177.97 (17)
O1—Ag—As1—C31	-175.90 (7)	C41—C42—C43—C44	0.8 (3)
As2—Ag—As1—C31	63.58 (6)	C42—C43—C44—C45	-0.4 (3)
As3—Ag—As1—C31	-61.89 (6)	C43—C44—C45—C46	0.2 (3)
	× /		× /

O1—Ag—As1—C11	-57.53 (8)	C42—C41—C46—C45	0.6 (3)
As2—Ag—As1—C11	-178.05 (7)	As2-C41-C46-C45	177.54 (16)
As3—Ag—As1—C11	56.48 (7)	C44—C45—C46—C41	-0.3 (3)
O1—Ag—As2—C61	68.85 (8)	C61—As2—C51—C52	144.80 (16)
As3—Ag—As2—C61	-55.84 (7)	C41—As2—C51—C52	-111.03 (16)
As1—Ag—As2—C61	179.51 (6)	Ag—As2—C51—C52	18.00 (17)
O1—Ag—As2—C41	-52.27 (8)	C61—As2—C51—C56	-33.53 (18)
As3—Ag—As2—C41	-176.96 (7)	C41—As2—C51—C56	70.65 (18)
As1—Ag—As2—C41	58.39 (7)	Ag—As2—C51—C56	-160.33 (15)
O1—Ag—As2—C51	-173.29 (8)	C56—C51—C52—C53	-0.6 (3)
As3—Ag—As2—C51	62.03 (6)	As2—C51—C52—C53	-178.98 (16)
As1—Ag—As2—C51	-62.63 (6)	C51—C52—C53—C54	0.1 (3)
O1—Ag—As3—C91	55.40 (8)	C52—C53—C54—C55	0.4 (3)
As2—Ag—As3—C91	-177.25 (6)	C53—C54—C55—C56	-0.4 (3)
As1—Ag—As3—C91	-50.99 (7)	C54—C55—C56—C51	-0.1 (3)
O1—Ag—As3—C81	-60.27 (8)	C52—C51—C56—C55	0.6 (3)
As2—Ag—As3—C81	67.07 (7)	As2—C51—C56—C55	178.87 (15)
As1—Ag—As3—C81	-166.67 (7)	C41—As2—C61—C62	-29.07 (18)
O1—Ag—As3—C71	174.38 (7)	C51—As2—C61—C62	75.77 (18)
As2—Ag—As3—C71	-58.27 (7)	Ag—As2—C61—C62	-158.38 (14)
As1—Ag—As3—C71	67.99 (6)	C41—As2—C61—C66	153.78 (16)
As2—Ag—O1—C1	-44.67 (16)	C51—As2—C61—C66	-101.38 (16)
As3—Ag—O1—C1	81.18 (15)	Ag—As2—C61—C66	24.47 (17)
As1—Ag—O1—C1	-164.26 (14)	C66—C61—C62—C63	3.0 (3)
Ag-01-C1-02	1.1 (3)	As2—C61—C62—C63	-174.05 (16)
Ag - O1 - C1 - C2	-176.22 (16)	C61—C62—C63—C64	-0.8 (3)
C_{21} —As1—C11—C16	113.68 (18)	C62—C63—C64—C65	-1.8(3)
C_{31} —As1—C11—C16	7.68 (19)	C63—C64—C65—C66	2.2 (3)
Ag—As1—C11—C16	-116.87 (17)	C64—C65—C66—C61	0.1 (3)
C_{21} —As1—C11—C12	-68.34 (16)	C62—C61—C66—C65	-2.7(3)
C_{31} —As1—C11—C12	-17434(15)	As2-C61-C66-C65	174 58 (16)
Ag = As1 = C11 = C12	61 10 (17)	C91 - As3 - C71 - C76	3 30 (19)
C16-C11-C12-C13	-0.8(3)	C81 - As3 - C71 - C76	104 96 (18)
As1-C11-C12-C13	-17884(16)	A_{σ} A_{s3} C_{71} C_{76}	-120.81(16)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.6 (3)	$C91 - As_3 - C71 - C72$	179 83 (16)
C_{12} C_{13} C_{14} C_{15}	-0.1(3)	C81 - As3 - C71 - C72	-78 51 (17)
C13 - C14 - C15 - C16	-0.2(4)	A_{σ} A_{s3} C_{71} C_{72}	55 72 (17)
C_{12} C_{11} C_{16} C_{15}	0.2(1)	C76-C71-C72-C73	0.0(3)
As1-C11-C16-C15	178 48 (17)	As3-C71-C72-C73	-17673(16)
C_{14} C_{15} C_{16} C_{11}	0.0 (4)	C71 - C72 - C73 - C74	-0.2(3)
C_{31} As1 - C_{21} - C_{26}	-109.09(16)	C72 - C73 - C74 - C75	0.1(3)
C_{11} A_{s1} C_{21} C_{26}	147 72 (15)	C73 - C74 - C75 - C76	0.1(3)
Ag = As1 = C21 = C26	1610(17)	C74 - C75 - C76 - C71	-0.5(3)
$C_{31} = A_{s1} = C_{21} = C_{22}$	74 20 (17)	C72 - C71 - C76 - C75	0.5(3)
C_{11} A_{s1} C_{21} C_{22}	-28.98(18)	As3-C71-C76-C75	176 91 (16)
A_{g} A_{s1} C_{21} C_{22}	-16060(14)	C91 - As3 - C81 - C82	94 70 (17)
C_{26} C_{21} C_{22} C_{23}	-0.9(3)	C71 - As3 - C81 - C82	-10 19 (18)
As1-C21-C22-C23	175 77 (15)	Ag_As3_C81_C82	-142.63(15)
$C_{21} = C_{22} = C_{23} = C_{24}$	0.0(3)	C91 - As3 - C81 - C86	-81.06 (17)
021 022 023 024	0.0 (0)	C/1 /105 C01 C00	51.00(17)

C22—C23—C24—C25	0.9 (3)	C71—As3—C81—C86	174.05 (15)
C23—C24—C25—C26	-0.9 (3)	Ag—As3—C81—C86	41.61 (17)
C24—C25—C26—C21	0.0 (3)	C86—C81—C82—C83	1.8 (3)
C22—C21—C26—C25	0.9 (3)	As3—C81—C82—C83	-173.83 (16)
As1-C21-C26-C25	-175.94 (15)	C81—C82—C83—C84	0.4 (3)
C21—As1—C31—C32	-5.59 (18)	C82—C83—C84—C85	-1.9 (3)
C11—As1—C31—C32	97.00 (17)	C83—C84—C85—C86	1.2 (3)
Ag—As1—C31—C32	-133.41 (15)	C84—C85—C86—C81	1.1 (3)
C21—As1—C31—C36	173.03 (15)	C82—C81—C86—C85	-2.6 (3)
C11—As1—C31—C36	-84.39 (16)	As3—C81—C86—C85	173.31 (16)
Ag—As1—C31—C36	45.20 (16)	C81—As3—C91—C96	131.53 (16)
C36—C31—C32—C33	0.6 (3)	C71—As3—C91—C96	-124.29 (16)
As1-C31-C32-C33	179.16 (16)	Ag—As3—C91—C96	3.15 (17)
C31—C32—C33—C34	-0.1 (3)	C81—As3—C91—C92	-46.35 (18)
C32—C33—C34—C35	-0.3 (3)	C71—As3—C91—C92	57.82 (18)
C33—C34—C35—C36	0.1 (3)	Ag—As3—C91—C92	-174.74 (15)
C34—C35—C36—C31	0.4 (3)	C96—C91—C92—C93	0.9 (3)
C32—C31—C36—C35	-0.7 (3)	As3—C91—C92—C93	178.77 (15)
As1-C31-C36-C35	-179.38 (15)	C91—C92—C93—C94	-0.2 (3)
C61—As2—C41—C46	103.09 (17)	C92—C93—C94—C95	-0.5 (3)
C51—As2—C41—C46	-0.27 (18)	C93—C94—C95—C96	0.6 (3)
Ag—As2—C41—C46	-128.00 (15)	C94—C95—C96—C91	0.1 (3)
C61—As2—C41—C42	-79.89 (17)	C92—C91—C96—C95	-0.9 (3)
C51—As2—C41—C42	176.75 (16)	As3—C91—C96—C95	-178.82 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O3—H3A…O2	0.887 (17)	1.879 (18)	2.765 (3)	177 (3)
C54—H54…N	0.95	2.56	3.307 (3)	135
O3—H3B···O3 ⁱ	0.865 (17)	2.17 (2)	2.973 (4)	154 (3)
Symmetry codes: (i) $-x+2, -y+1, -z+1$.				

